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Aging is the strongest known risk factor for Alzheimer's disease (AD). With the discovery of the mechanistic tar-
get of rapamycin (mTOR) as a critical pathway controlling the rate of aging in mice, molecules at the interface
between the regulation of aging and the mechanisms of specific age-associated diseases can be identified. We
will review emerging evidence that mTOR-dependent brain vascular dysfunction, a universal feature of aging,
may be one of the mechanisms linking the regulation of the rate of aging to the pathogenesis of Alzheimer's
disease. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and
Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.
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1. Introduction

Alzheimer's disease (AD) is characterized by a progressive loss of
memory followed by the disintegration of other cognitive functions. In
its early stages, deterioration is specific to the ability to learn new infor-
mation; motor and sensory functions are for themost part spared. Over
time, neurodegeneration expands to other domains and leads to overt
dementia and death approximately a decade after disease onset [1].
The progressive disability associated with AD entails significant suffer-
ing for patients and caregivers, and imposes a major financial toll on in-
dividuals and families affected and society at large. The incidence of AD
has been steadily risingmostly as a consequence of increased life expec-
tancy in most populations. The number of AD cases, which is currently
estimated at 36 million worldwide, is expected to triple by 2050. The
very high costs associated with long-term care for AD patients are ex-
pected to create a potentially overwhelming burden on healthcare
systems.

Aging is, by far, the strongest known risk factor for AD [2]. However,
very little is known about the molecular mechanisms that link the reg-
ulation of brain aging to diseases like Alzheimer's. Vascular dysfunction,
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a universal feature of aging [3,4], is oneof the earliest events in AD [3–7].
A hallmark of vascular aging is impaired endothelium-dependent vaso-
dilation [8–10], which leads to chronically decreased cerebral blood
flow (CBF) [11]. Decreased CBF is not necessarily an indication of a dis-
ease state since reduced CBF is present in otherwise healthy subjects
when compared to young adults [11]. Chronic reduction in CBF, howev-
er, has been linked with decreased neuronal plasticity and impairment
of cognitive function. Prominent vascular pathologic conditions are
present in AD and other age-related brain diseases, including
Parkinson's disease, dementia with Lewy bodies, and vascular dementia
[5–7,12,13]. Cardiovascular risk factors increase the risk for AD; con-
versely, controlling cardiovascular risk factors decreases the risk for
AD [14]. Furthermore, cerebrovascular damage and aberrant protein ag-
gregation and deposition, are commonly linked in a number of demen-
tias [15]. Thus, age-associated brain vascular changes may represent an
early and universal event of aging that underlies the increased suscepti-
bility of aged brains to specific neurological diseases of aging, including
AD.

Neurons are damaged or lost in AD [1]. Neurons depend critically on
blood vessels for the continuous delivery of oxygen and nutrients and
the removal of products of metabolism and of potentially toxic brain
metabolites [4]. Because 90% of the energy in brain is provided through
aerobic metabolism, cerebral blood flow (CBF) is tightly regulated to
meet the brain's metabolic demands. The brain consumes 25% of the
body's oxygen and receives ~20% of cardiac output. The dependence
of neuronal activity on delivery of nutrients and oxygen through in-
creased blood flow, a process called neurovascular coupling, is so tight
echanisms linking the control of aging toAlzheimer's disease, Biochim.
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that local increases in blood flow and blood oxygenation are used to di-
rectly infer changes in neural activity in functional MRI studies [16].

The target of rapamycin (TOR), also referred to as mechanistic TOR
(mTOR) [17–19], is a central regulator of cell growth and survival that
is a signaling hub for cellular pathways sensing nutrients, insulin, and
growth factor availability. TOR has a clear role in the control of the
rate of aging in invertebrates [20–24], and systemic attenuation of the
mammalian TOR/mTOR increases lifespan in mice [25–28]. The tissue-
and cell-specific mechanisms by which mTOR controls mammalian
aging are, however, still unknown. mTOR controls protein homeostasis
by promoting cap-dependent translation and inhibiting autophagy
[29], and it regulates key aspects of cellular metabolism [18,30]. mTOR
functions as a central switch between anabolic versus catabolic process-
es in response to nutrients, growth cues, and cellular energy status by
integrating multiple inputs that result in its activation or inhibition. In
addition to these critical activities, emerging evidence discussed in
this review suggests a key role of mTOR in the regulation of vascular
function by specific mechanisms active in vascular endothelial and
smooth muscle cells [31–38]. mTOR has been shown to regulate vascu-
lar function acutely [33] as well as chronically [34,39] and our recent
studies suggest that mTOR has a role in vascular contributions to the
pathogenesis of AD [40]. Evidence for acute and chronic mTOR-
dependent effects on vascular function are discussed in this review.
The mechanisms by which mTOR regulates mammalian aging and
those by which it regulates brain vascular function acutely and chroni-
cally, however, are largely unexplored.

Because aging is the major risk factor for AD and other dementias, it
is imperative that the mechanistic interface between the regulation of
aging and the specific pathogenesis of age-associated neurological
diseases be defined. This review will discuss current evidence for TOR-
centered brain vascular dysfunction as a critical mechanistic link be-
tween aging and the pathogenesis of AD, and will highlight specific
therapeutic opportunities.

2. Alzheimer's, Aβ, and synaptic function

Synapses are amajor target in the pathogenesis of AD [1], and the re-
lease of the amyloid-beta (Aβ) peptide at synaptic sites, triggered by
neuronal activity, has a critical role in this process. The Aβ peptide is a
product of proteolytic processing of a large transmembrane precursor
protein, the amyloid precursor protein (APP), for which ligands have
been identified [41–44]. Generation of Aβ depends on specific proteases
that catalyze the cleavage of APP intramembranously and at different
sites of its extracellular domain [45–47]. Aβ monomers spontaneously
form a wide range of soluble oligomeric species including dimers, tri-
mers, tetramers, dodecamers (5–25 nm in diameter) and higher-order
oligomers and protofibrils (over 40 nm in lenght) [48] aswell asmature
fibrils with high β-sheet content [49,50] which can assemble and
desposit in the extracellular space to seed the formation of microscopi-
cally visible plaques and cerebral amyloid angiopathy (CAA) lesions in
brain parenchyma and vasculature respectively [51–53] (Fig. 1).

Numerous studies have shown that before plaques form, soluble
oligomeric forms of Aβ [54] may exert toxicity at synapses by various
mechanisms, prominently by impairing glutamatergic synaptic trans-
mission strenght and plasticity [55,56] and causing synaptic loss [56].
Aβ secretion at synaptic sites is activity-dependent [57,58] and the
available evidence supports the notion that APP and Aβ are part of a
feedback loop that regulates neuronal excitability, in which secreted
Aβ acts as a neuromodulator that suppresses excitatory synaptic activity
postsynaptically [57,58]. A recent study, however, suggested that small
increases in Aβ secreted fromwild-type neurons stimulate synaptic ac-
tivity at the presynaptic level in amanner that is inversely dependent on
the neuron's firing rate [59]. These observations are consistent with
prior studies that showed dose-dependent effects of Aβ on synaptic
transmission, with picomolar and low nanomolar concentrations of
Aβ having positive and negative effects on synaptic transmission
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respectively, through mechanisms involving activation of the α7-
nicotinic acetylcholine receptor [60–62]. Higher levels of Aβ associated
with pathology, however, impair long-termpotentiation (LTP), a persis-
tent strenghtening of synapses that is one of the mechanisms underly-
ing synaptic plasticity [56], and induce long-term depression (LTD), a
process functionally opposite to LTP that reduces the efficacy of synap-
ses [63]. Glutamate receptors of the NMDA (NMDARs) and AMPA
(AMPARs) type regulate the changes in neuronal excitability associated
with LTP and LTD. Aβ induces endocytosis of AMPARs postsynaptically,
thus attenuating glutamatergic excitatory neurotransmission [57,58,
64]. The mechanisms of Aβ-induced LTP block [56] may also involve a
partial block of NMDA-dependent signaling by desensitization, ulti-
mately leading to synaptic depression and potentially the induction of
LTD [57,58,65], spine shrinkage, and synaptic loss [57,58,65].

The generation of Aβ by proteolytic processing of APP and its release
into brain interstitial fluid (ISF) is continuous throughout life and does
not trigger disease when in its normal, soluble form [66]. Pathologically
high levels of Aβ and Aβ oligomers, however, will disrupt synaptic plas-
ticity and ultimately lead to neuronal loss. Dyshomeostasis of Aβ levels
in ISF can thus have significant consequences for brain function and is
hypothesized to be a critical causative event in the pathogenesis of AD.

3. Mechanisms of Aβ removal from brain

The cerebrovascular system, comprising endothelial cells, vascular
mural cells (smooth muscle cells or pericytes) astrocytes and neurons,
critically contributes to brain function [4,6]. In the central nervous sys-
tem (CNS), endothelial cells are connected by specialized structures,
‘tight junctions’, to form a practically impermeable barrier [67,68]. Be-
cause paracellular movement of water and blood-borne substances is
effectively abolished, the interchange of substances happens only
transcellularly and depends on passive or active transport through en-
dothelial cells. This highly selective permeability interface, the blood–
brain barrier, allows the passage of water, some gases, and lipid-
soluble molecules (by passive diffusion). The blood–brain barrier thus
regulates the selective transport of molecules such as glucose and
amino acids, crucial to neural function, and limits or impedes entry of
potential neurotoxins such as amino acids, which are kept in brain at
10% of their concentration in blood, by systems involving active trans-
port. A prominent example is the sodium-dependent excitatory acidic
amino acid cotransporter (e.g. glutamate and aspartate; EAAT) trans-
porter [69] that promotes the removal of glutamate and prevents the
entry of glutamate from blood into the brain tomaintain low glutamate
concentrations in the interstitial fluid. Whereas the blood–brain barrier
is localized at the tight junctions between brain endothelial cells, astro-
cytes, pericytes and neurons are also integral to blood–brain barrier
structure and function [67,68]. Pericytes encircle capillaries through nu-
merous cytoplasmic projections, make tight junctions and adherens
junctions with endothelial cells, and regulate microvascular stability
by secretion of extracellular matrix and permeability by secretion of
specific growth factors [70]. Pericytes belong to the vascular smooth
muscle cell (VSMC) lineage [71]. Recent studies have suggested that
pericytes, like VSMC are contractile [72], and contribute to regulating
brain capillary blood flow, although this has not been fully established
yet [73]. In addition to having a key role in the regulation of synaptic ac-
tivity, astrocytes are a prominently associatedwith brain vascular endo-
thelial cells, pericytes and neurons through ‘foot processes’. Astrocytes
interact with brain endothelial cells to regulate water and electrolite
levels in brain [74] and have a major role, together with VSMC, in the
synchronization of metabolic demand arising from neuronal activation
with increases in local CBF, a process known as neurovascular coupling
[75]. Another type of glial cells, microglia, are resident macrophages in
brain that have phagocytic and antigen-presenting capacities. A subset
of microglial cells associated with neurovasculature known as
‘perivascular microglial cells’ is bone-marrow derived and can signal
to circulating immune cells [76] (Fig. 1).
echanisms linking the control of aging toAlzheimer's disease, Biochim.
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Fig. 1. Neurovascular cell components and their interactionswith amyloid-ß. a. Endotheliumof cerebral arteries is surrrounded by vascular smoothmuscle cells surrounded by astrocytic
end-feet that rest on a layer of connective tissue, the adventitia.b. The capillarywall is composedof endotheliumandpericytes attached to a basementmembrane andencased by astrocytic end-
feet. c. After its generation by neurons and release at synaptic sites, Aβ in the interstitial fluid (ISF) can be cleared by neuronal reuptake via LRP1; by neuronal autophagy (both intracellular Aβ
and potentially reuptaken Aβ); through proteolytic degradation by insulin-degrading enzyme (IDE) and neprilysin (NEP) [81–83]; through uptake and degradation bymicroglia and astrocytes
[77–80]; through LRP1-mediated uptake and degradation by VSMC; by transport to the CSF and reabsorption into venous circulation [84] (not shown), and by direct transport via LRP1 across
the blood–brain barrier [67,85]. RAGE (or ApoJ, not shown)mediate re-entry of Aβ into the brain. Pericytes clear extracellular Aβ via LRP1 [125,126]. CAA, cerebral amyloid angiopathy. RAGE,
receptor for advanced glycation end-products. Illustrations of vessels in panel c aremodified fromPatel andHonoré 2010Nat Rev. Nephrol 6:530 and fromHoffman andCalabrese 2010Nat Rev.
Rheumatol 10:454. Schematic representations of brain capillaries and arteries in panels a and b are adapted from Zlokovic BV 2011 Nat Rev Neurosci 12:723.
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After its generation by neurons and release at synaptic sites, Aβ in ISF
can be cleared by various mechanisms, including uptake and degrada-
tion by microglia and astrocytes [77–80], proteolytic degradation
[81–83], transport to the CSF with subsequent reabsorption into the
venous blood [84], and direct transport across the blood–brain barrier
[67,85](Fig. 1c). Impaired Aβ clearance from brain has been document-
ed for AD [86] and slower clearance kinetics resulting in increased Aβ
half-life was strongly associated with increasing age [87]. Cellular and
direct proteolytic degradation, involving enzymes like neprilysin
and insulin-degrading enzymes in the extracellular space [81], con-
tribute to clearance of Aβ from brain. A significant fraction of sub-
arachnoid CSF cycles through the brain interstitial space, entering
the parenchyma along the paravascular space that surrounds pene-
trating arteries and cleared along paravenous drainage pathways.
Paravascular flow contributes to clearing ISF solutes, including Aβ
[84]. However, most Aβ is removed from the brain through the
blood–brain barrier, extruded into the circulation, and degraded
largely by the liver and kidney [88].

The low-density lipoprotein receptor-related protein 1 (LRP1), a
member of the low-density lipoprotein receptor (LDLR) family, is a
large multi-functional cell surface receptor protein that regulates endo-
cytosis of different ligands and associates with other cell membrane
Please cite this article as: V. Galvan,M.J. Hart, VascularmTOR-dependentm
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receptors to regulate intracellular signaling pathways [89,90]. LRP1 is
widely expressed, with its highest levels in the liver, brain, and lung
[89]. In the brain, LRP1 is expressed in neurons, glia, and cells of the
cerebrovasculature. Neurons both produce Aβ and clear it from the
synaptic space through reuptake followed by lysosomal degradation
[91,92]. Endocytosis is critical for the generation of Aβ [93,94] and its re-
trieval from the cell surface [95]. LRP1-dependent clearance of Aβ [96]
by neurons through endocytosis was demonstrated in studies in
which LRP1 was knocked out exclusively in forebrain neurons; the re-
sult was a significantly increased Aβ half-life in ISF and exacerbated
Aβ plaque deposition [97].

The autophagy-lysosomal pathway also plays a central role in
the regulation of intracellular and extracellular levels of Aβ
[98–101](Fig. 1). In addition to being a major Aβ degradative pathway,
autophagy may contribute to Aβ secretion [102]. Significant neuronal
loss, as seen in AD, is rare in mutant APP transgenic mice that robustly
deposit Aβ, but it is usually extensive in APP/Aβmodels that accumulate
Aβ intraneuronally [103]. If the accumulation of Aβ intracellularly is
more toxic than its release in the ISF, it has been suggested that the ex-
pected beneficial effects brought on by degradation of intracellular Aβ
through autophagy may supersede the negative impact associated
with release of Aβ in ISF [104].
echanisms linking the control of aging toAlzheimer's disease, Biochim.
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LRP1 also has a critical role in clearing Aβ from brain through the
cerebrovasculature [85,97,105–107]. LRP1 is highly expressed in cells
of the brain vasculature, including endothelial cells, where it is the
major Aβ receptor for clearance of the peptide across the blood–brain
barrier [105] (Figs. 1 and 2). LRP1-mediated transport can be saturated
at high concentrations of Aβ (70 nM-100nM [105]). High levels of inter-
stitial Aβ, such as those observed in transgenicmousemodels, may thus
trigger further increases in ISF Aβ levels by saturation of LRP1-mediated
transport, and promote Aβ aggregation. During its transport across the
blood–brain barrier, neuronally-generated Aβ in ISF is bound by LRP1
expressed on brain endothelium, at the abluminal side of the blood–
brain barrier [107]. A wealth of evidence indicates that LRP1 binding
by Aβ initiates the process of Aβ clearance from brain to blood
[108–112]. The critical role of LRP1 in the export of Aβ out of the brain
is substantiated by multiple in vitro and in vivo studies. When Aβ is
present at high levels, its transport across the blood–brain barrier is
almost completely abolished by LRP1 antagonists such as anti-LRP1 an-
tibodies or binding by the LRP-specific chaperone, receptor-associated
protein (RAP). However, at lower peptide loads, neutralization of LRP1
by antibody or receptor-associated protein binding reduces (but does
not abolish) Aβ clearance [105]. This effect suggested the existence of
Fig. 2. Vascular mTOR-dependent mechanisms linking the control of aging to the pathoge
limited to those for which evidence inmammals is available) as they interface with the regulati
endothelial cells. *,first step in the clearance of Aß by transcytosis across the blood–brain barrier
VSMC, discussed in the ‘mTOR and vascular function’ section. Because those mechanisms are less
mTOR-driven pathways of aging and those of AD pathogenesis to mechanisms acting in endot
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other transport mechanism(s) at the blood–brain barrier that operate
to clear Aβ when the peptide is present at very low levels. The nature
of this high-sensitivity pathway, however, is still unknown.

The phosphatidylinositol-binding clathrin assembly (PICALM) pro-
tein [113], which participates in endocytosis and internalization of cell
surface receptors, was recently linked to AD in genome-wide associa-
tion studies [114,115]. PICALM associates with LRP1 during Aβ
transcytosis across endothelialmonolayers [116]. Also, iPSC-derived en-
dothelial cells carrying an AD- protective PICALM allele show signifi-
cantly higher expression of PICALM and substantially increased Aβ
clearance, compared to iPSC-derived endothelial cells expressing a
non-protective PICALM allele [116]. These data suggest that PICALM
regulates Aβ transcytosis and clearance and that polymorphisms in
the PICALM locus enhance Aβ clearance and thereby reduce the risk of
AD.

LRP1 is also expressed in vascular smooth muscle cells (VSMC),
where it mediates lysosomal degradation of Aβ [117–119]. Uptake and
degradation of Aβ by VSMC is inhibited by serum-response factor and
myocardin, which reduce clearance of Aβ by downregulating LRP1
[119]. Early in AD, VSMC develop a hypercontractile phenotype [120]
that contributes to deficits in cerebral blood flow. In addition, Aβ
nesis of Alzheimer's disease.mTOR-driven pathways of aging (highlighted in yellow and
on of eNOS-dependent NO generation andwith pathways of Aß clearance in brain vascular
. NB: There is evidence for a role ofmTOR in the regulation of specific aspects of function in
understood, we have limited our schematic representation of the intersection between of
helial cells, that have been more extensively examined.
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degradation by VSMC becomes impaired [120]. Accumulation of Aβ and
Aβ deposition in pial and intracerebral arteries and arterioles thus leads
to cerebral amyloid angiopathy (CAA; Fig. 1c). In agreement with a the
critical role of LRP1 in VSMC-mediated Aβ clearance, conditional dele-
tion of LRP1 in VSMC exacerbates Aβ plaque deposition and CAA in a
mouse model of AD [117].

Microglia and astrocytes also have important roles in the removal of
Aβ from ISF [78–80]. Bothmicroglia [77,78,121,122] and astrocytes [79,
123,124] have a prominent role in clearing Aβ from ISF by internaliza-
tion and degradation. In addition, pericytes may also be integral in Aβ
clearance, since Pdgfrβ haploinsufficiency –which leads to pericyte
loss – dramatically decreases Aβ clearance and increases Aβ deposition
early in progression of AD-like pathogenesis in a mouse model of AD
[125]. Pericytes clear extracellular Aβ via LRP1 [125,126]. A critical
role for pericytes in vascular dysfunction in aging [127,128] and in AD
is also suggested by the fact that APOE4 carriers show accelerated
pericyte degeneration correlatedwith the degree of blood–brain barrier
deterioration and decreased levels of LRP1 [129].

Another multi-ligand receptor protein, the receptor for advanced
glycated end-products (RAGE), has been implicated in the movement
of Aβ back into the CNS [85,130]. Re-entry of Aβ into the brain can
also occur viaApoJ-mediated blood-to-brain transport down its concen-
tration gradient [89]. This system, however, is expected to be saturated
under physiological conditions, favoring the net efflux of Aβ out of the
brain (Fig. 1).
4. Vascular dysfunction in aging

Vascular dysfunction is a universal feature of aging. Regulation of
blood flow by arteries and arterioles relies on the communication be-
tween endothelial cells and VSMC at the vascularwall [131]. Thus, a rec-
ognized central injury of vascular aging is impaired endothelial function
[132,133]. Functional and structural changes in both endothelial cells
and VSMC, and dysfunction in themechanisms that mediate communi-
cation between themwill induce changes in their structure that in turn
augment endothelial dysfunction [133,134]. Major age-associated
mechanisms that contribute to age-dependent dysfunction in the
vascular wall are less bioavailability of nitric oxide due to decreased ni-
tric oxide biosynthesis and its increased scavenging by free radicals as-
sociated with increased oxidative stress [135], increased activity or
levels of vasoconstrictors, and increased inflammation [131,134,136].
A critical role of oxidative stress and inflammation in brain vascular
aging [137] was indicated by studies that showed that caloric restric-
tion, an intervention that robustly extends lifespan in many species
[138], prevents impairment of angiogenesis, reduces oxidative stress
and inflammation, and inhibits apoptosis in aged cerebromicrovascular
endothelial cells [139]. Aging, in turn, exacerbates loss of pericyte
coverage and subsequent cerebromicrovascular rarefaction and
neurovascular uncoupling associated with increased inflammation in
obese mice [127]. Endothelial senescence is also associated with altered
function of endothelial nitric oxide synthase (eNOS), such that it pro-
duces superoxide instead of nitric oxide. This change in enzymatic activ-
ity is referred to as “eNOS uncoupling” and leads to reduced nitric oxide
bioavailability and increased oxidative stress [140]. The main result of
the synergistic interaction between these age-associated changes is
less endothelium-dependent vasodilation, considered the central injury
of vascular aging (Fig. 2) and a main mechanism by which aging in-
creases the risk for CVD and atherosclerosis in humans [131,134]. The
progressive impairment of endothelial function begins in middle
age in humans and is associated with aging as an independent factor,
even without other cardiovascular risk factors [141]. Yet the mecha-
nisms that link the regulation of the rate of aging to age-associated
vascular dysfunction are still unknown, although the activation of
sirtuins and changes in telomere maintenance have been suggested
[131].
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5. The mechanistic target of rapamycin (mTOR) and the control of
aging

The mechanistic/mammalian target of rapamycin (mTOR) is a ser-
ine/threonine kinase of the phosphatidylinositol-3-OH kinase (PI3K)-
related family that functions as a major regulator of cellular growth
andmetabolism by integrating signaling cascades activated in response
to nutrient and growth factor availability [18,19,142]. mTOR functions
as hub for the switch between anabolic versus catabolic processes in re-
sponse to nutrients, growth cues, and cellular energy status because of
the multiple inputs that lead to its activation or inhibition, and its role
in the regulation of critical cellular functions. mTOR kinase associates
with specific companion proteins to form two complexes with distinct
specific substrates: mTOR complex 1 (mTORC1) and mTOR complex 2
(mTORC2) [18,19] (Fig. 2).

Rapamycin, an antifungal macrolide compound, has been used in
combination with other drugs for immunosuppression after transplant
therapy. Various derivatives (everolimus, temsirolimus, umirolimus,
ridaforolimus, and zotarolimus) are currently approved for use in clini-
cal conditions including elution fromvascular stents to prevent resteno-
sis following angioplasty, and as a treatment for some cancers [19,142].

Rapamycin inhibits mTORC1 through binding to the immunophilin
FKBP12. The rapamycin-FKBP12 complex subsequently binds to the ki-
nase in the context of themTORC1 complex and potently inhibits its ac-
tivity [143]. Although mTORC2 is not directly inhibited by the
rapamycin-FKBP12 complex, prolonged exposure of cells to high levels
of rapamycin can reduce the availability of mTOR kinase such that
mTORC2 assembly is inhibited [144]. This effect of rapamycin is thought
to be associatedwith glucose intolerance andhyperlipidemia,which are
negative metabolic consequences of prolonged rapamycin treatment
[145]. An important output of mTORC1 signaling is the positive
regulation of lipid biosynthesis mainly through sterol-regulatory-
element-binding protein (SREBP) transcription factors 1 and 2 by un-
clear mechanisms [142,146–148]. mTORC1 potently upregulates
SREBP-2 [146,147], a transcriptional suppressor of the major Aß clear-
ance receptor, LRP1 [149].

mTORC1 is activated by the insulin and insulin-like growth factor 1
pathways through PI3K and AKT signaling and amino acid availability,
and is repressed byAMP-activated protein kinase (AMPK), a critical sen-
sor of cellular energy status detected by the kinase as low AMP:ATP ra-
tios [142]. In response to activating signals such as growth factor
receptor binding or amino acid transport into the cell, mTORC1 pro-
motes mRNA translation and protein synthesis through at least three
of its substrates: ribosomal protein 6 kinases 1 and 2 (S6K1 and
S6K2), and eukaryotic translation initiation factor 4E-binding protein
1 (4EBP1). Active repression of mTORC1 activity will not only suppress
these energy-demanding cellular functions, but also relieve mTORC1-
dependent inhibition of autophagy, effectively switching the cell from
anabolic to catabolic state [18,29,142,150] (Fig. 2).

Autophagy initiation is regulated by two kinases, unc-51-like kinase
(ULK1) and vacuolar protein sorting-34 (VPS34). mTORC1 potently re-
presses ULK1 through direct phosphorylation and destabilization
[151]. The mechanistic link between sensing of nutrient availability by
mTORC1 and the regulation of autophagy is enabled by the localization
of many signaling complexes and regulation of activation of mTORC1 at
the lysosome, and depends on a class of small G proteins, the Rag
GTPases [30]. Active RagA or RagB bound to GTP bind Raptor to translo-
cate mTOR to the lysosomal surface. This is required for active Rheb to
activate mTORC1 as a response to growth factor stimulation. Amino
acids generated in lysosomes by catabolism are sensed by the vacuolar
H+-ATPase that signals to activate the Rag GTPases [30]. An overlapping
system of control of metabolism by mTORC1 involves the mTORC1-
dependent inhibition of transcription factors essential for lysosomal
biogenesis, transcription factor EB (TFEB), and transcription factor bind-
ing to IGHM enhancer 3 (TFE3) [152]. Consistent with the concept that
mTORC1 is critical in regulation of autophagy, hyperactivation of
echanisms linking the control of aging toAlzheimer's disease, Biochim.
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mTORC1 by loss of function of its upstream regulator tuberous sclerosis
complex 1 (TSC1) potently inhibits autophagy [29,153]. Evidence for
the involvement of mTORC2 in the regulation of autophagy is limited,
although mTORC2 can indirectly repress autophagy by activation of
AKT and the forkhead box O3 (FOXO)3A transcription factor. mTORC2,
however, is also required for stability of the actin cytoskeleton, which
is in turn required for early autophagosome formation. Thus, mTORC2
may have a dual role in the regulation of autophagy [29].

Activation ofmTORC1has potent effects on the cell'smetabolic state.
mTORC1 regulates glucose metabolism through the hypoxic response
transcription factor subunit HIF-1alpha by its phosphorylation and sta-
bilization [154]. Stabilized HIF-1alpha associates with its companion
subunit HIF-1beta activity to promote the transcription of a large set
of genes, notably VEGF and erythropoietin, both involved in glucose
and iron metabolism [155] (Fig. 2). To terminate mTORC1-driven re-
sponses, mTORC1 activation by the insulin and insulin-like factor 1 is
regulated through a primary negative-feedback inhibitory pathway
whereby high activation of the mTORC1/S6K1 pathway suppresses Akt
activity [150]. This mechanism depends on the phosphorylation of
IRS-1 bymTORC1-activated S6K1 [156]; this process induces IRS-1 inac-
tivation and degradation, effectively blocking signaling through insulin
and insulin-like and other growth factor receptors [156,157] (Fig. 2).
This process is thought to be a major cause of insulin resistance in
peripheral tissues [158]. In addition, mTOR directly phosphorylates
the insulin receptor, triggering its internalization, thus in turn decreas-
ing its own activation.mTOR hyperactivity is though to contribute to in-
sulin resistance in diabetes mellitus. mTORC2 phosphorylates Akt on
Serine 473 to activate it [159,160], which facilitates activation of eNOS
by Akt [161,162]. Using a similar mechanism to ensure negative feed-
back inhibition, phosphorylation of Akt on Ser473 also targets Akt for
ubiquitination and degradation by the proteasome [163].

Experiments in invertebrates [22,164–168] provided the first dem-
onstration that TOR regulates aging. Chronic pharmacological reduction
of mTOR signaling by rapamycin or genetic manipulation by deletion of
its downstream target S6K1 also extends lifespan in mice by delaying
aging [25–28]. The mechanisms by which TOR regulates aging in mam-
mals, however, are still not understood. Dietary restriction – reduced
nutrient intake in the absence of malnutrition – extends lifespan in
many species [169,170]. To date, dietary restriction and TOR attenuation
are the only two interventions that extend lifespan in yeast, worms,
flies, andmice [142]. There is genetic evidence that mTOR is a critical ef-
fector of lifespan extension by caloric restriction in yeast and in
C. elegans [20,166], but the interaction between mTOR activity and
caloric restriction responses is complex. There is general consensus,
however, that reduced mTOR signaling is important in dietary
restriction-dependent lifespan extension [142,171].

Lifespan extension by mTOR attenuation in mice was first reported
in 2009 in studies conducted by the National Institute on Aging's Inter-
ventions Testing Program (ITP) [172]. In these studies, chronic systemic
rapamycin, fed in the chow, extended the lifespan of genetically hetero-
geneous mice arising from a 4-way cross at the three independent test-
ing locations of the ITP [25–28]. Remarkably, attenuation of mTOR
activity began at 600 days of age, approximately comparable to
60 years of age in humans [25]. That rapamycin effectively extended
lifespanwhen administered late in life is highly relevant because all pre-
vious experimental manipulations that increased lifespan in mammals
(mice or rats) were initiated early in life [173]. Subsequent studies
showed that initiating rapamycin treatment at the same dose but earlier
in life did not further extend the lifespan [27]. Rapamycin extendedme-
dian lifespan by 18% and 10% in female and male mice respectively.
These results were confirmed in a genetic model of mTOR attenuation
by S6K1 knockout, in which lifespan was also increased, but only in fe-
males [174]. Further studies showed that the frequency and form of
causes of death in rapamycin-treated animals were not altered [27]. In
addition to potential beneficial effects of rapamycin on neoplasias,
many forms of age-dependent change – such as alterations in heart,
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liver, adrenal glands, endometrium, and tendons, as well as age-
dependent decline in spontaneous activity – occur more slowly in
rapamycin-treated mice, suggesting that mTOR attenuation retards
multiple aspects of aging in mice [26]. Increasing the dose of rapamycin
by threefold compared to the original studies byHarrison et al. extended
median lifespan by 23% and 26% inmales and femalemice, respectively;
maximal longevity was also increased in both sexes [28]. These studies
further compared endocrine and metabolic changes and expression of
hepatic genes involved in xenobiotic mechanisms in rapamycin-
treated and caloric-restrictedmice. Patterns of change from these inter-
ventions differed significantly, suggesting that these two interventions
that extend lifespan differ in many respects. Various studies have re-
ported changes in mTOR signaling with age, but the direction of change
varied for different strains, sexes, tissues and ages compared [175–179].
An exhaustive analysis by Baar et al. [180] inwhich gender and fed state
were variables, used C57BL6/Jnia animals up to 30 months of age to
show that aging is not associated with increased mTOR activity in
most tissues, suggesting that mTOR inhibition by rapamycin does not
promote lifespan extension through reversal of an age-associated in-
crease in mTOR [180]. This is in agreement with the notion that mTOR
activity may be, in a manner comparable to the relationship of high
levels of tosterone and risk for prostate cancer in late life, a pleiotropic
trait selected for its beneficial effects in early life (e.g. by increasing
fitness during reproductive age) that has negative effects post-
reproductively in later life, when selective pressure wanes [181–183].

If mTOR attenuation slows the rate of aging in mice, then the age at
onset and the progression of age-dependent diseases asmodeled in this
species should also be delayed in animals in which mTOR activity is at-
tenuated. Thus, increasing lifespan by mTOR inhibition should also
lengthen the period of life devoid of significant chronic disease or
disability. Current evidence suggests that this is may be the case for di-
etary restriction, at least in rodents [169,184] and in rhesus monkeys
[185,186]. In agreement with the hypothesis that mTOR attenuation
slows aging, accumulating experimental evidence suggests that mTOR
attenuation can delay or block the progression of neurological diseases
or dysfunctions of aging such as Parkinson's [187–190], Alzheimer's
[40,191–196], tauopathy [197–199], frontotemporal lobar dementia
[200–203], and age-associated cognitive decline [204–207].

6. mTOR and vascular function

The senescent phenotype of aortic endothelial cells in C56BL/6 Jmice
made obese by consumption of high-fat diet was shown to be Akt/
mTOR-dependent [36]. In this model, inhibition of the Akt/mTOR axis
by rapamycin restored endothelial cell replicative life span, endothelial
sprouting, eNOS activity, and endothelium-mediated vasorelaxation. In
vivo, these phenotypes correlated with improved angiogenic response,
blood flow recovery, decreased limb necrosis, and increased capillary
density after hindlimb ischemia [36]. Augmented arginase activity in
endothelial cells is causally implicated in the reduction of eNOS activity
through decreased availability of the eNOS substrate L-arginine [208].
Arginase-II upregulated themTOR/S6K1 pathway in isolatedmesenteric
arteries, and thus may be implicated in a feedforward mechanism of
mutual positive regulation that can be abolished by attenuating mTOR
activity [37]. A recent study showed that persistently hyperactive
S6K1 promoted endothelial senescence with eNOS uncoupling, in-
creased superoxide generation, and decreased NO production in vitro
in senescent primary HUVEC and ex vivo in aortas of aged rats [35].

Chronic in vivo mTOR inhibition by intravenously injected
rapamycin enhances endothelial-dependent vasodilation in isolated
rat aortic rings acutely [31,33,34] and mesenteric arterioles chronically
treatedwith rapamycin [209] via endothelial-dependent nitric oxide re-
lease. Several in vitro studies using isolated rat aortic rings showed that
acute ex vivo [31,33] and chronic in vivo [34] treatment with rapamycin
has pronounced vasodilatory effects via an endothelium-dependent
mechanism. Other studies have reported either no effect [38,210] or
echanisms linking the control of aging toAlzheimer's disease, Biochim.
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negative [32] effects of mTOR attenuation on vasodilation, but these
effects were not specific to endothelium-dependent reponses [32].
While vascular responses elicited ex vivo consistently showed a
vasodilatory effect of rapamycin-induced attenuation of mTOR activ-
ity, the systemic effects of mTOR attenuation with rapamycin have
yielded conflicting results. This is likely a result of different study de-
signs, drug doses, and durations of treatment duration [31–34,39].
Interestingly, angiotensin II (AngII) impairs insulin-stimulated phos-
phorylation of eNOS through activation of its receptor AT1R and by
transactivation of epidermal growth factor receptor, resulting in
the activation of mTOR/S6K1 and phosphorylation of IRS-1 at
Ser636/639, which blocks Akt-dependent phosphorylation of eNOS
[209]. These studies delineate a mechanism that may contribute to
explain the mechanistic link between mTOR pathway activity and
the regulation of endothelium-dependent nitric oxide release and
vasodilation (Fig. 2).

The regulation of eNOS gene expression and protein activation, and
many other key aspects of endothelial homeostasis is controlled by he-
modynamic shear stress, the blood flow-generated frictional force act-
ing on endothelial cells [161,211]. Further evidence that the mTOR/
S6K1 signaling pathway has a key role in the modulation of eNOS func-
tionwas provided by studies that used a perivascular ‘cast’ consisting of
a cylinder with a tapered lumen to create a high shear stress field in the
carotid artery of eNOS-GFP transgenic mice, with concomitant regions
of low shear stress and oscillatory shear stress upstream and down-
stream of the perivascular ‘cast’ device [39]. mTOR attenuation with
rapamycin dose-dependently increased low basal eNOS expression
levels in regions of the casted carotid under low shear stress, and
conversely decreased high basal eNOS expression levels in regions
under high shear stress, suggesting thatmTOR regulates the shear stress
responsiveness of the vessel wall [39].

In addition to releasing NO, brain vascular endothelial cells are con-
nected by tight junctions to form the blood–brain barrier. Emerging ev-
idence suggests that mTORmay have a critical role in endothelial injury
arising from ischemia-reperfusion, the initial phase of blood–brain bar-
rier disruption. In an in vitro model of ischemia-reperfusion using
oxygen-glucose deprivation/reoxigenation in brain microvascular en-
dothelial cells (BMVEC), and in vivo by transient middle cerebral artery
occlusion/reperfusion in rat, attenuation of mTOR with rapamycin at-
tenuated BMVEC apoptosis and increase in reactive oxygen species, re-
versed a decrease in levels and promoted the redistribution of tight
junction protein zonula occludens-1 to the cell membrane, and reduced
Evans blue extravasation in the ischemic hemisphere [212]. mTOR inhi-
bition by rapamycin also decreased progression of brain edema after
focal cerebral ischemia-reperfusion injury by preserving blood–brain
barrier integrity and inhibiting MMP9 and AQP4 expression [213]. Sim-
ilar results were reported for short-term outcomes of ischemic stroke
followed by reperfusion, with rapamycin providing protective effects
on percent infarct area, apparent diffusion coefficient, signal intensity,
and motor function compared to the vehicle-treated group [214].
Protective effects of mTOR attenuation with rapamycin have also been
reported for in vitro models of oxygen-glucose deprivation and reoxy-
genation by attenuation of astrocytic migration and decreased produc-
tion of inflammatory mediators by these cells [215]. These studies are
in agreement with the notion that inhibition of the mTOR pathway
may induce neuroprotective autophagy in models of ischemia and is-
chemia protection by preconditioning [216–218].

Recent studies, however, suggested that activity of the Akt/mTOR/
S6K1 pathwaymay be necessary for in vitro preconditioning and protec-
tion against oxygen and glucose deprivation [219]. An active Akt/mTOR
pathway appears required for the protective effects of ischemic post
conditioning, both in vitro and in in vivo models [220]. Although the
role ofmTOR in stroke is not yet clear, differences observed between dif-
ferent models may be related to differences in the time scale for treat-
ment and outcome measurement (short- or long-term), and from cell
type-specific roles of mTOR.
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In addition to its role in regulating key aspects of vascular endothe-
lial function, available evidence indicates a role of mTOR in the regula-
tion of vascular smooth muscle cell proliferation and phenotypic
conversion from contractile to synthetic phenotypes [221] (Fig. 2b).
Neointima formation, the leading cause of restenosis following coronary
stenting, is caused by the proliferation of smoothmuscle cells in the cor-
onary artery. Restenosis is associated with infiltration by monocytes.
Rapamycin inhibits neointima formation and reduces the adhesiveness
of smooth muscle cells in the coronary artery, reducing infiltration of
monocytes, thus inhibiting restenosis in humans [222].mTOR inhibition
also blocks arginine vasopressin-induced down regulation of autophagy
in vascular smooth muscle cells [223], and promotes VSMC fate [224,
225]. Although distal EC dysfunction has been observed with
rapamycin-eluting stents implanted in coronary heart disease patients
[226,227], recent studies have shown that this effectmay be at least par-
tially due to delayed or absent re-endothelization of the stent [228], or
to effects of the stent itself [229]. In vitro studies using primary mouse
VSMC [225,230] have shown that mTOR is required for chondrogenic/
osteogenic transdifferentiation of vascular smooth muscle cells that
contributes significantly to medial arterial calcification and that this
pathway is inhibited by adiponectin. Furthermore, in vivo studies of vas-
cular calcification in mice modeling chronic renal failure showed that
Klotho, a protein implicated in the regulation of aging, is required for
mTOR-dependent vascular calcification in kidney [231]. Consistent
with these observations, it was recently shown that mTOR attenuation
with rapamycin blocks plaque progression in ApoE knockout mice fed
a diet supplementedwith cholesterol by inhibition ofmonocyte chemo-
taxis [232].

Taken together, the evidence discussed above suggests that mTOR is
a negative regulator of eNOS-dependent NO generation and of tight
junction integrity at the blood–brain barrier, both critical aspects of
brain vascular endothelial cell function. In addition, the evidence
discussed suggests a critical role of mTOR in driving vascular smooth
muscle cell proliferation as well as their phenotypic conversion from a
contractile to a secretory phenotype aswell as in their chondrogenic/os-
teogenic transdifferentiation.

7. Cerebrovascular dysfunction in Alzheimer's disease

In epidemiological studies, conditions with cerebrovascular func-
tional disturbances such as diabetes mellitus [233,234], hypertension
[235], cerebral small vessel disease [236] transient ischemia, stroke
andmicrovascular pathologies [237] increase the risk for AD. Converse-
ly, controlling vascular dysfunction reduces the risk for AD. APOE geno-
type is associated with risk for AD [238,239]. ApoEε2, ε3, and ε4 alleles
strongly modify the likelihood of developing AD and CAA in a dose-
dependent manner. ApoEε4 and ApoEε2 increase and decrease the
risk for AD respectively. APOE genotypemay act bymodulating the like-
lihood that Aβ begins to deposit. A current hypothesis is that APOEe4 in-
creases Aβ accumulation in the brain and its vasculature, or impairs
clearance as compared to other isoforms, or both [240].

A steady supply of blood and oxygen delivery to brain is critical for
brain function and essential for life. In normal physiological conditions,
brain blood flow is kept remarkably constant. One important aspect of
cerebral blood flow regulation is cerebral autoregulation, a process
that ensures constant brain blood flow under conditions of variable ar-
terial blood pressure. The mechanisms of cerebral autoregulation are
not completely understood, and evidence suggests that the regulatory
mechanisms are possibly different for responses elicited by increases
versus decreases in pressure [241]. Reductions in cerebral blood flow
stimulate the release of specific vasoactive substances in the brain and
recent evidence suggests that intrinsic innervation may have a role in
this response [242]. Compensatory mechanisms activated by increases
in pressure involve the myogenic response of cerebral smooth muscle,
that constricts when subject to elevated pressure and dilates in re-
sponse to decreased pressure [243]. The regulation of cerebral blood
echanisms linking the control of aging toAlzheimer's disease, Biochim.
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Fig. 3. Vascular and parenchymal mTOR-dependent mechanisms of Alzheimer's dis-
ease pathogenesis. mTOR mechanisms of AD pathogenesis impact both ‘hits’ in the ‘two
hit’ hypothesis [4]. mTOR inhibits autophagy, whose activation has been associated with
improved outcomes by reducing levels of neuronally-generated Aß in ISF (a)
[98,102,191,192,307]. mTOR also inhibits eNOS activation in vascular endothelial cells
(b) [31,33,34,39,40], possibly through the phosphorylation of IRS1 [37,156,157], and
thus impedes NO release and vasodilation. Attenuation of mTOR activity may improve
cognitive function in AD by releasing mTOR inhibition of autophagy in brain parenchyma
[191,192], to reduce ISF Aß levels (a; Hit two in the two-hit hypothesis [4]), and by releas-
ingmTOR inhibition of eNOS in vascular endothelial cells, to restore vascular integrity and
function (b; Hit one in the two-hit hypothesis [4]). This enables effective clearance of Aß
from ISF [(c), right-pointing shaded arrow]. In turn, keeping ISF Aß levels low preserves
brain vascular integrity and function [(c, left-pointingwhite arrow]. Concomitantly reduc-
ing net Aß generation in parenchyma and preserving Aß clearance through brain vascula-
ture is expected to maintain low steady-state parenchymal Aß levels.
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flow is also potently influenced by other regulatory mechanisms, in-
volving neurovascular coupling [244] and CO2 reactivity [245] and by
cholinergic hemodynamic regulation [246]. Large arteries as well as pa-
renchymal arterioles contribute prominently to vascular resistance in
brain [247]. Large artery resistance in brain provides a mechanism to
ensure constant bloodflowand can help attenuate changes inmicrovas-
cular pressurewhen arterial blood pressure increases, thus ensuringmi-
crovasculature integrity and protecting the brain from vasogenic edema
[241].

The local increase of cerebral blood flowduring brain activity as a re-
sult neurovascular coupling involves the communication between neu-
rons, glia, vascular cells [244]. During functional hyperemia, blood flow
through parenchymal microvessels increases focally at the activated
area as a response to the activation of neurons, only during the period
of activation. This response is coordinated by the interaction between
endothelial cells, pericytes and smooth muscle cells. There is general
consensus that the regulation of neurovascular coupling involves
many vasoactive factors acting simultaneously to increase local blood
flow by targeting these vascular cell types. Please see Girouard and
Iadecola [248] for a detailed review of this topic. Endothelial cells play
an important role in the regulation of vascular tone through the release
of vasoactive substances such as nitric oxide (NO) [249], endothelium-
derived hyperpolarizing factor [250] and endothelin [251]. NO can be
biosynthesized by NO synthases (NOS). NO contributes significantly to
functional hyperemia elicited by neuronal network activation [244,
252–256]. In mammals, there are three genes that encode neuronal
(nNOS, NOS1), endothelial (eNOS, NOS3) and cytokine-inducible
(iNOS, NOS2) forms of the enzyme respectively. iNOS is involved in an-
timicrobial reponses and in the regulation of specific T cell subsets of the
immune system [257]. Significant evidence exists for a role of nNOS in
the regulation of functional hyperemia [244,252] and recent studies
suggest a role of eNOS [253–255]. eNOS is protective against focal
ischemia-induced injury [258] and mediates the increases in CBF elicit-
ed by exercise [259]. Endothelial dysfunction as impaired NO bioavail-
ability is also associated with impaired neurovascular coupling in
conditions associated with microvascular aging such as hypertension
and obesity [127,260–264]. The relative contribution of eNOS and
nNOS to the regulation of functional hyperemia, however, is not yet
fully understood [253,255,265]. While it has been shown functional hy-
peremia may be independent of eNOS [265], recent evidence suggests
that genetic ablation of eNOSdecreases CBF responses in somatosensory
cortex evoked by whisker stimulation or the administration of ATP
[266]. Once released, NO induces vasodilation by binding to the heme
moiety of guanylyl cyclase in smooth muscle cells of arteries and arteri-
oles, activating the enzyme that then catalizes the coversion of GTP to
cGMP [267]. cGMP serves as a second messenger in smooth muscle to
ultimately result in smooth muscle relaxation via decrease in smooth
muscle Ca2+ concentration [268].

Cerebrovascular dysfunction includes microvascular deficits and
focal disruption of microcirculation, leading to a decrease in
microcapillary density; neurovascular uncoupling; loss of blood–brain
barrier integrity; and endothelial and vascular smooth muscle cell dys-
function, leading to decreased responsiveness to vasodilating stimuli
[4–6,119]. Neurovascular dysfunction is one of the earliest events in
AD and other types of neurodegeneration that lead to diminished CBF
[5–7]. Neurovascular uncoupling, demonstrated as diminished CBF in
response to brain network activation, is also prominent and precedes
neurodegenerative changes in AD patients [7,269]. Decreased CBF di-
minishes the brain's supply of oxygen and nutrients and reduces effec-
tive clearance of toxic products of brain metabolism from ISF. In
addition, levels of Aß in ISF increase in conditions of low CBF as a conse-
quence of diminished Aß vascular clearance [86]. Cerebrovascular dys-
function and disintegration lead to loss of neuronal networks by
insufficient delivery of oxygen and nutrients to glial/neuronal networks,
failure to clear products of metabolism (including Aβ), and leakage of
blood-borne molecules [4,6]. Although some blood-borne proteins are
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cleared in the interstitial space, accumulation of serum proteins in
parenchyma can lead to brain edemaand suppression of capillary perfu-
sion [4].

The importance of vascular dysfunction in AD has long been recog-
nized, but vascular pathways to AD remain understudied. Cerebrovas-
cular dysfunction may be the first ‘hit’ in a ‘two-hit’ process that leads
to AD, triggering the imbalance in brain Aß levels that triggers abnormal
Aß accumulation, the second hit in the pathogenesis of AD [4] (Fig. 3).
While Aß-induced toxicity has been extensively studied, there is still a
significant gap in our understanding of the molecular mechanisms
through which vascular dysfunction is linked to AD.

The interactions of Aβwith the cerebral vasculature has specific con-
sequences for different cerebrovascular cell components. CAA results
from focal to widespread Aß deposition in leptomeningeal and
intracortical cerebral blood vessels (Fig. 1). CAA can be prominent in
VSMC of pial and intracerebral arteries and arterioles; Aß depositions
in the glia limitans and adjacent neuropil are referred to as precapillary
Aß, and those in the capillary wall are referred to as capillary Aß depo-
sitions [270]. CAA is present in roughly 80% of patients with AD [4,270,
271]. However, CAA is frequently observed in the elderly, even in those
without AD [270]. In CAA of small arteries and arterioles, the smooth
muscle layer can atrophy and rupture, leading to intracerebral hemor-
rhage, which contributes to and also aggravates brain damage [272,
273]. Indeed, patients carrying specific variants in the Aβ sequence
such as L34V and E22Qmutations have accelerated VSMC degeneration
that leads to hemorrhagic stroke anddementia [274–276]. Furthermore,
Aβ itself constricts cerebral arteries [277]. In a recent study, cognitively
normal APOE4 carriers (who have a higher risk for AD) showed im-
paired CBF responses to brain activation before detectable Aß accumu-
lation [278,279]. Both patients with AD and mouse models of AD
develop high levels of serum response factor (SRF) and MYOCD, two
transcription factors that control VSMC differentiation. These abnormal
levels of SRF and MYOCD induce a hypercontractile phenotype that
echanisms linking the control of aging toAlzheimer's disease, Biochim.
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leads to brain hypoperfusion, diminished functional hyperemia, and
CAA [119,120].

In addition, Aβ induces toxicity anddysfunction in vascular endothe-
lial cells including the activation of programmed cell death pathways
[52] as well as by inducing oxidative-nitrosative stress, which activates
the DNA repair enzyme poly(ADP)-ribose polymerase (PARP) [280].
The resulting increase in ADP-ribose opens transient receptor potential
melastatin-2 (TRPM2) channels in endothelial cells, leading to intracel-
lular calcium ion overload [280]. Exposure to a mixture of monomeric
and oligomeric Aβ, but not to each species separately, reduced LRP1
and increased RAGE levels in cultured endothelial cells modeling the
blood–brain barrier [281]. Furthermore, recent studies demonstrated
that oligomeric Aβ interacts with TRAIL DR4 and DR5 death receptors
on endothelial cells, triggering mitochondrial-dependent activation of
multiple caspases associated with programmed cell death [282].

8.mTOR in Alzheimer's and other age-associated neurodegenerations

Initial evidence that mTOR is involved in the pathogenesis of AD
came from studies that examined the relevance of macroautophagy
for the generation of Aß in neurons [283,284], and it was demonstrated
that enhancing autophagic-lysosomal function leads to substantially de-
creased Aß levels and deposition in brain [98]. More recent studies sug-
gest a dual role for autophagy in the degradation and secretion of Aß
[101,102]. Consistent with a critical role of the autophagy-lysosomal
pathway in the regulation of Aß levels, activation of AMP-activated pro-
tein kinase by resveratrol, which potently inhibitsmTOR by phosphory-
lation, enhances autophagic-lysosomal degradation of Aβ in a manner
dependent on the AMPK-mediated inhibition of mTOR [285] (Fig. 1).

mTOR is involved in the pathogenesis of other neurodegenerative
diseases of aging through its inhibition of apoptosis and proteostasis,
the latter prominently through autophagy, in polyglutamine-
expanded huntingtin models of Huntington's disease [286] and alpha
synuclein [287], parkin [288] and L-DOPA dyskinesia [289] models of
Parkinson's and Lewy body diseases [189], and in the tau P301S model
of tauopathy [199]. Of note, recent studies from one of our laboratories
showed that proteins with reported chaperone-like activity were over-
represented among the proteins upregulated in brains of rapamycin-fed
mice modeling Alzheimer's disease, and that this was associated with
increased activity of the master regulator of the heat shock response,
heat-shock factor 1 [290]. Thus, mTOR-dependent inhibition of
proteostasis in brain may involve both autophagy and aspects of the
chaperone response. In addition to inhibiting autophagy, mTOR may
also be involved in aberrant activation of the cell cycle, which caused
neurodegeneration in a fly model of tauopathy [291] and contributes
to toxicity of Aß oligomers inmodels of AD [292]. Hyperactive or upreg-
ulatedmTOR and some of its downstream effectors have been observed
in brains of patients with AD [293,294] and in some AD mouse models
[40,191,192,295]. Furthermore, studies have suggested that the
increased acitivity or levels of mTOR in ADmouse brains are mechanis-
tically linked to increased Aß [193,296]. Consistent with these observa-
tions, recent studies showed that chronic (48 h) mTOR attenuation
protects against synaptic failure induced by Aß in cultured neurons by
increasing the frequency of miniature postsynaptic currents through a
presynaptic mechanism [195].

In the first in vivomechanistic demonstration that mTORwasmech-
anistically involved in the pathogenesis of AD-like disease asmodeled in
mice, chronic treatment of AD mice with enterically-delivered
rapamycin, at doses that increase lifespan by delaying aging [25,26,
28], blocked the progression of AD-like cognitive deficits and decreased
brain histopathological hallmarks of the disease in two independent
models of AD, hAPP(J20) [191] and 3xTg-AD mice [192]. This involved
the activation of autophagy, at least in neurons and potentially in
other parenchymal cell types. Late intervention with rapamycin at 15
months of age, after plaques and tangles appear in the 3xTg-AD
model, was shown not to be effective in this model [297]. More recent
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studies however, demonstrated that in the hAPP(J20) model of AD,
chronic systemic attenuation of mTOR with rapamycin can treat
established AD-like cognitive deficits even when treatment is started
after robust AD-like memory impairments occur [40]. The mechanisms
of action involve restoration of cerebrovascular function and integrity
through preservation of endothelium-dependent nitric oxide-
mediated vasodilation [40]. Thus, mTOR attenuation in brain both acti-
vates autophagy in parenchyma and restores cerebrovascular integrity
and function, suggesting that mTOR has critical roles in the regulation
of autophagy in neurons and in the regulation of nitric oxide release in
brain vasculature (Fig. 3). These compartments are functionally linked,
because Aß is produced in neurons and a large proportion of
neuronally-generated Aß is cleared through the vasculature [4,67,85,
111]. Thus, attenuation of mTOR in brain may establish a feedforward
loop linking neurons and the cerebrovascular compartment, in which
relief of mTOR-mediated inhibition of neuronal autophagy lowers the
rate of Aß production. In turn, relief of mTOR-mediated inhibition of
endothelium-dependent nitric oxide release maintains cerebrovascular
integrity and function, thus increasing the rate of Aß clearance from
brain (Fig. 3). While the acute effects of mTOR attenuation on
endothelium-dependent vasodilation are consistent with prior studies
[31,33,34,39] and may be explained by the activation of eNOS and sub-
sequent release of nitric oxide [40], it is unknown how acute nitric
oxide-dependent vasodilation caused by mTOR attenuation leads to
the long-term restoration of vascular density and the maintenance of
CBF in AD mice.

Hyperphosphorylated forms of the microtubule-associated protein,
tau, form neurofibrillary tangles, a histological marker of Alzheimer's
disease. Neurofibrillary tangles are also histological hallmarks of other
tauopathies such as frontotemporal dementia and Parkisonism linked
to chromosome 17. Evidence suggests that tau is downstream of Aß in
a pathway of toxicity associated with the pathogenesis of AD [298]. In
agreement with this notion, recent studies showed that mTOR attenua-
tion blocks hyperphosphorylated tau-induced neurodegeneration in
the perforant pathway [299]. Furthermore, hyperphophorylated tau
levels and its localization may be regulated by mTOR [300]. An impor-
tant yet largely unexplored output of mTOR signaling is the mTOR-
dependent phosphorylation of tau at S356, S214 and T231301, Thr231, and
potentially Ser214/Thr212. mTOR-dependent tau phosphorylation sites
are critical for generation of abnormally hyperphosphorylated and
misfolded tau [302], mechanistically linked to AD neurodegeneration
[301]. Further, attenuating mTOR activity with rapamycin blocks tau
phosphorylation and restores cognitive deficits in streptozotocin-
induced diabetic mice [198]. Attenuation of mTOR with rapamycin
also decreased tau levels and phosphorylation in hippocampus, restored
hippocampal volume, reduced demyelination, and improved behavioral
outcomes in a rat model of accelerated aging [303]. Fredrick et al. [304]
and Caccamo et al. [305] recently showed that rapamycin or a
rapamycin analog decreased brain phopho-tau, insoluble tau, and neu-
rofibrillary tangles, and restored behavioral deficits in tau mutant
mice. In light of this evidence, mTOR inhibitors are being actively pur-
sued as therapies for tauopathies [306].

9. Vascular TOR-centered pathwaysmay link the regulation of aging
to the pathogenesis of Alzheimer's disease

Organismal agingdoes not arise fromgradual processes of functional
decline operating uniformly in every organ and physiological system,
but comes from specific age-associated changes involving a finite num-
ber of critical systems [26]. There is a wealth of correlative data on age-
associated physiological changes and the pathology of age-associated
diseases. However, until recently, the rate of aging could not be experi-
mentally manipulated other than by caloric restriction; thus, mechanis-
tic studies to determine the causality of relationships between aging
and the pathogenesis age-associated diseases were very difficult. With
the discovery that specific TOR-centered molecular pathways control
echanisms linking the control of aging toAlzheimer's disease, Biochim.
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the rate of aging, we can now seek answers to the key question:Which
molecules are at the interface between regulation of the rate of aging
and the mechanisms of specific age-associated disease? Because aging
contributes over 90% of the risk for Alzheimer's disease, the identifica-
tion of the specific molecular mechanisms that link the regulation of
brain aging to the pathogenesis of AD are imperative.

Because mTOR controls key metabolic functions in most cell types
and pharmacologically inhibiting mTOR extends lifespan and
healthspan [25–28], retarding multiple, but not all, aspects of aging in
mice, mTOR may be involved in several different, specific processes of
complex disease mechanisms mediating neurodegeneration. Based on
the evidence reviewed above, TOR-dependent neurovascular dysfunc-
tion may be a critical event in the pathogenesis of AD-like disease as
modeled in mice (Figs. 1-3). In addition to models of AD, chronic
mTOR attenuation improves disease-specific outcomes in models of
Huntington's [286], Parkinson's and Lewy body diseases [189,288],
and cognitive outcomes in a rat model of accelerated aging [303]. In ad-
dition to inhibiting autophagy, mTOR may also be involved in aberrant
activation of the cell cycle, which caused neurodegeneration in a fly
model of tauopathy [291] and contributes to toxicity of Aß oligomers
in models of AD [292].

mTOR attenuation activates autophagy in brain parenchyma, in-
cluding neurons of mouse models of AD [191,192,307] (Fig. 3) and
models of tauopathy [197–199,305]. The activation of autophagy in
neurons is linked to delayed disease progression in these models.
The involvement of autophagy may be limited to parenchymal
cells, including but not restricted to neurons undergoing disease-
specific proteostatic stress via accumulation of misfolded and aggre-
gated proteins such as Aß and tau [191,192,197–199,305,307]. Evi-
dence for activated macroautophagy, however, was also found in
brain vascular endothelial cells in association with neuritic plaques
[308]. Furthermore, mTOR attenuation blocks Aß-induced toxicity
while increasing autophagy in cultured vascular endothelial cells
[309]. Whether the activation of autophagy as a result of mTOR at-
tenuation in brain vascular cells contributes to its beneficial effects,
however, remains unknown.

We have only begun to approach the identification of specific
molecules at the interface between the regulation of aging and the
mechanisms of specific age-associated diseases (‘age-pathogenic’
mechanisms). Emerging evidence suggests thatmTOR-driven inhibition
of endothelium-dependent nitric oxide-mediated vasodilation may
constitute a mechanistic link between aging and the pathogenesis of
Alzheimer's disease and potentially a critical age-pathogenic mecha-
nism in brain (Fig. 2).

10. Potential therapeutic approaches

A mechanistic understanding of age-pathogenic mechanisms as de-
fined above will be crucial for interventions aimed at increasing
healthspan, the period of life with good health and function. This aim
was singled out as an important area of future endeavor by the trans-
NIH Geroscience Interest Group Summit [310]. Although how TOR
drives aging is still unknown, awealth of prior data and our recent stud-
ies suggest that TOR-dependent brain vascular dysfunctionmay be crit-
ical event in the pathogenesis of AD-like deficits inmousemodels, and a
key age-pathogenic mechanism underlying the increased vulnerability
of aged brains to specific neurological diseases.

Closing the gap in our understanding of the mechanisms that link
brain vascular dysfunction to AD will lead to the development of phar-
macological strategies to treat AD, including but not limited to drugs
currently approved for clinical use such as rapamycin and rapalogs. Im-
portantly, the elucidation of mTOR-centered age-pathogenic mecha-
nisms may have major implications for treatment of neurological
diseases of aging beyond AD alone. Emerging evidence suggests that
one of these critical age-pathogenic mechanisms may reside at the
brain vascular endothelium and may be common to all age-associated
Please cite this article as: V. Galvan,M.J. Hart, VascularmTOR-dependentm
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neurological diseases of aging that share vascular dysfunction as a key
mechanistic component. As these mechanisms are mapped, many
other potential targets for pharmacological intervention will be uncov-
ered. Once age-pathogenic mechanisms have been mapped and thera-
peutic strategies have been devised, there is the promise that AD and
other dementias could be treated to retard or halt functional decline.

At present, because mTOR inhibitors are available for clinical use,
translational studies of mTOR inhibition as a therapy for moderate-
stage AD are possible in the very short term. It is also expected that ther-
apies inwhichmTOR inhibition is used in ‘on-off’ schedules in combina-
tion with other drugs may be developed. Furthermore, it is becoming
increasingly apparent that more than one drug will be needed to effec-
tively treat AD. Immunization-based therapies to reduce Aß have
shown detrimental vascular effects [311,312]. An important implication
of the elucidation of mTOR-dependent pathways of vascular damage in
AD is that this knowledgemay lead to usingmTOR inhibitorswith drugs
to reduce Aß while preserving cerebrovascular integrity and function.
However, because of the multiple effects expected of systemic inhibi-
tion of mTOR, mechanisms of rapamycin-induced neuroprotection and
vasculoprotection must be elucidated to enable the design of better
strategies, such as the use of existing drugs, or development of new
ones, that target key effectors of rapamycin-induced neuroprotection
and/or vasculoprotection while avoiding potential undesirable side ef-
fects. As these studies are performed, rapamycin-based therapies to
treat AD can be designed that take advantage of strategies such as inter-
mittent administration, personalized dosage, and tailored frequency of
treatment.
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